
Gene 421 (2008) 52-60 

Contents lists available at  ScienceDirect 

Gene 

ELSEWER journal  h o m e p a g e :  w w w . e l s e v i e r . c o m / l o c a t e / g e n e  

Classification analysis of triplet periodicity in protein-coding regions of genes 

F.E. Frenlzel *, E.V. I<orotlzov 
Bioengineering Centre of RAS. Moscow. Russia 

A R T I C L E  I N F O  A B S T R A C T  

Article history: 
Received 4 March 2008 
Received in revised form 14 May 2008 
Accepted 6 June 2008 
Available online I1 June 2008 

Received by M. Di Giulio 

Key words: 
Triplet periodicity 
Classification 
Coding regions 
Reading frame 
Shift 
Inversion 

We introduce a new concept of triplet periodicity class (TPC) and a measure of similarity between such 
classes. We performed classification of 472288 triplet periodicity (TP) regions found in 578868 genes from 
29th release of I<EGG databank. Totally 2520 classes were obtained. They contain 94% of 472288 found cases 
of TP. For 92% of TP regions contained in classes the same linkage of TP to open reading frame (ORF) is 
observed. For 8% of TP cases we revealed a shift between ORF of a gene and ORF common for majority of 
genes contained in a TPC. For these 8% of periodic regions the hypothetical amino acid sequences 
corresponding to ORF built by TPC were made. BLAST program has shown that 2679 hypothetical amino acid 
sequences have statistically significant similarity with proteins from UniProt databank. We suppose that 8% 
of TP regions contained in classes possess a mutation originating from ORF shift. Obtained TPCs can be used 
for identification of genes' coding regions as well as for searching for mutations arisen arising from ORF shift. 

O 2008 Elsevier B.V. All rights reserved. 

1. Introduction 

Triplet organization of protein-coding DNA sequences is a property 
of all currently ltnown living systems (Ficltett, 1998; Staden. 1994; 
Baxevanis. 2001 ; GutiCrrez et  al., 1994; Gao et  al., 2005: Yin and Yau, 
2007; Eskesen et  al.. 2004; Bibb et  al.. 1984; I<onoplta. 1994). The 
reason for this lies not only in structure of genetic code (Trifonov, 
1999; Eigen and Winkler-Oswatitsch, 1981), but also in usage of 
"favorite" triplets of DNA residues for coding certain amino acids 
(Zoltowski, 2007: Antezana and Kreitman, 1999) and in saturation of 
proteins by particular amino acids (I<arlin and Bucher. 1992: Zhang, 
2005). It is also suggested that TP appeared as a result of necessity of 
mutation control via ORF shift (Trifonov. 1987). Investigation of gene 
TP can be a subject of interest for development of more powerful 
algorithms for searching DNA coding regions (Ficltett, 1996). and also 
for analysis of DNA coding regions' evolution (Trifonov. 1999; Eigen 
and Winkler-Oswatitsch. 1981). For revealing TP, there are currently 
developed methods that use regularity of preferences for symbols in 
different triplet positions in DNA sequences. As a mathematical tool, 
they use Fourier transform (Issac et  a]., 2002: Malteev and Tumanyan. 

Abbreviations: CCM, central class matrix: ORF, open reading frame: TP, triplet 
periodicity: TPC, triplet periodicity class: TPM, triplet periodicity matrixl: TPC-ORE 
reading frame of triplet periodicity class. 
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1996: Tiwari e t  al., 1997). hidden Markov chains (Azad and 
Borodovsly. 2004: Henderson et al., 1997). neural networks (Snyder 
and Stormo, 1993: Thomas and Skolnick, 1994) and some other 
statistical methods based on position-dependent preferences for 
nucleotides in coding sequences (Fickett. 1996). 

Certain problems arise when the coding potentials based on 
current mathematical methods are used. First. Fourier transform- 
based methods do not allow revealing TP with symbol insertions and 
deletions, and also do not allow distinguishing TP found in one DNA 
sequence from TP found in another one. This can be done by 
introducing a term of "triplet periodicity class" (TPC). Classes combine 
genes having closely-related TP. We consider the class to be a property 
that allows distinguishing TP found in one DNA sequence from TP 
found in another DNA region in quantitative manner. Methods based 
on dynamic programming allow detecting periodicity with insertions 
and deletions, but do  now allow finding latent periodicity in DNA 
coding regions through using weight matrices for nucleotide pairs 
(I<orotkov et  al.. 2003a.b). When using neural networks. learning 
sample of coding sequences (Snyder and Stormo, 1993; Thomas and 
Skolnick, 1994) is created. But possible antagonistic triplet periodi- 
cities will decrease specificity of TP for revealing coding regions. 

TP is important for development of mathematical methods for DNA 
coding regions' prediction (Fickett, 1996).The task is to develop such a 
method of revealing TP that will detect it at  higher statistical 
significance level. This will allow increasing specificity of DNA coding 
regions' detection. However, there are several problems on this way. 
First, mutational alterations of DNA sequences include not only 
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Fig. 1. Impact of one base deletion on TP of nucleotide sequence. Numerals over sequences S1. S2. S3 and S4 indicate nucleotide positions i n  ORE The 25th base (underlined) was 
deleted from sequence S1. Consequently sequence S1 can be represented as rwo sequences S2 and S3. In  these sequences there will be the same periodicity (matrices M2 and M3) but 
in sequence 53 i t  wil l be shifted by one base relative to new ORF appeared after deletion. This means that 1st column of matrix M2 corresponds to 3rd column of matrix M3, 2nd 
column of matrix M2 corresponds to 1st column of matrix M3.3rd column of matrix M2 corresponds to 2nd column of matrix M3. Consequently we obtain sequence S4 that has TP 
matrix M4= M1 +M2. After summation 1st column of matrix M2 is joined with 1st column of matrix M3 and so on. This results in joining of nonidentical columns and considerably 
decreases statistical significance of TP in sequence S4. 

substitutions, but also symbols' insertions and deletions. They positions in period, while row attributes are nucleotides (I<orotkov 
decrease the possibility of detecting TP in coding sequences of DNA et a].. 2003a). Introduction of matrices simplifies joining similar TP 
bases (Fig. 1). into classes, searching of the shift between ORF and TP of some class, 

Second, different DNA sequences may contain antagonistic types of and also revealing of TP in inverted form. 
TP (Fig. 2). Such types. upon their concatenation into one learning In current work, we tried to solve three problems. First. w e  wanted 
sample (e.g.. for neural network tuning), have lower specificity for to find all the coding sequences having TP in genes from [<EGG 
coding region detection. We can avoid these problems and increase databank (http://www.genome.ad.jp/kegg/) of version 29 (more than 
power of TP as coding potential if we single out classes of TP which 4x lo5 genes) by information decomposition method and then to 
combine genes possessing similar type of periodicity. Search for DNA combine closely-related matricesofTP into classes.Therefore, for each 
coding regions can be carried out by methods of profile analysis gene under consideration we built corresponding matrix of TP that 
(Gribskov and Veretnik. 1996) using obtained classes of TP as profiles. was bound to ORF of the given DNA region. This means that the first 
It is possible to search for TP with insertions and deletions by method column in triplet periodicity matrix (TPM) corresponded to the first 
of profile analysis, and also toanalyze association of periodicityclasses base of ORF presented in DNA region having TP. 
with ORFs that can be observed in DNA sequences belonging to these Consequently, we were able to obtain 2520 TPCs by joining close 
classes. In addition, ifTP has a correlation with ORF. then we can reveal matrices and taking into account possible cyclic shifts and inversions. 
regions in genes where shift of ORF relative toTP has occurred or those These classes contain 94% of all TP regions found in genes. For each class 
regions where inversion of DNA bases has happened. Such capabilities we built the list of matrices which the given class consists of, and list of 
are connected with a fact that periodicity cannot disappear because of ORF positions. [n this list. it was also indicated if the matrix was used in 
individual evolution events such as deletions or insertions of inverted form or not during joining the class. Each class in the list always 
nucleotides or inversion of DNA sequences (I<orotkov et  al., 2003a). contained one OW that could be assumed as dominant for the class.This 

Building TPCs can be done well using method of information frame was common for majority of all TPMs joined by the class. We 
decomposition (I<orotltov et  al.. 2003a.b) that allows introducing the denoted this OW as TPC-ORE For each TPC we revealed genes having 
term of TPC as 3x4-sized matrix. In a matrix, column attributes are ORF different from class' one also including cases of inversion. 

123123123123123123123123123123123123123123123123 
actaccagtagcgctgccggtggcactaccagtagcgctgccggtggc 

S 1 

M  1  
1 7 . 1  

123123123123123123123123123123123123123123123123 
caacagctactgtaatagttattgcaacagctactgtaatagttattg 
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s1+s2 9 8 8 8  
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Fig. 2. Example of DNA base sequences with antagon~stic TP. By antagonistic we assume periodicities disappearing after matrices join. Matrices M I  and M2 are bullt for TP in 
sequences S1 and S2. I fwe use sequences 51 and 52 in learning sample then their triplet periodicities wi l l  "ann~hilate" each other. Aggregat~on of matrices M I  and M2 illustrates this 
effect. After such join (matrix M3) a TP disappears. 
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Second, we wish to check whether hypothetical amino acid 
sequences translated from TPC-ORF have similarity with sequences 
from UniProt databank (http://www.uniprot.org/) or not. We checlted 
those genes that had mismatch between their own ORF and the one of 
a TPC. This can be the evidence of the fact that ORF shift has occurred 
in the analyzed gene during its evolution. We confirmed existence of 
such a shift because we found similarity between hypothetical amino 
acid sequences and amino acid sequences from UniProt databank. 

Third. we wanted to check the possibility of existence of amino 
acid sequences translated from inverted DNA regions. In order to do 
that, we selected those genes in which TPC was observed in inverted 
form only. We have built hypothetical amino acid sequences for these 
inverted gene sequences. In the current work we have found that 
many of these hypothetical amino acid sequences have high level of 
similarity with amino acid sequences from UniProt databank. This fact 
shows that shifts of ORF and inversions of DNA sequences are wide- 
spread in genes, and classes of TP can be useful tool for identification 
of such events. 

2. Materials and methods 

2.1. Search for triplet periodicity in genes 

We performed a search for TP in genes accumulated in 29th release of 
]<EGG databank by the method of information decomposition (I<orotkov 
et al.. 2003a.b). We used only coding sequences (CDS) for classification of 
triplet periodicity. These sequences started with start-codon and 
finished with stop-codon: introns have already been cut out. The total 
fraction of these sequences in the set of genes from I<EGG-29 was equal 
to 97%. thus we have studied the most part of the genes. Namely, we 
compared DNA base sequence of each gene A(n)={a(l)a(2) ...., o(n)} 
with equal-sized artificial periodic sequence of the form: S(3) = {s(l )s(2)s 
(3)s(l )s(2)s(3).. ... s(l)s(2)s(3)}, where s(1) E 'l', s(2) '2'. and s(3)e  '3'. In 
this sequence the symbols were treated as numbers. To compare these 
sequences, we filled coincidence matrix M(3x4). This matrix has 
~ymbols '1'. '2' and '3' as attributes of columns and symbols of DNA 
base sequences w(1)e'a'. w(2)='t', w(3) ~ ' c ' .  and ~ ( 4 ) - ' g '  as attributes 
of rows. Element m(ij) of the matrix shows the number of w(i)s(j) 
coincidences between two compared sequences. During filling matrix 
M. first base of first codon always corresponded to symbol s(1) of 
artificial periodic sequence. After filling matrix M, we calculated mutual 
information according to formula (I<ullback. 1978): 

1 = x7-I ZP=,m(i.jj 1nmci.j)- x:x(ij Inx(i)- xfy(j) Iny(jj + n Inn (I) 

where n - length of examined symbolic sequence, x(i), i = l ,  2. 3 - 
frequencies of symbols 'l', '2' and '3' in artificial periodic symbolic 
sequence: yu), j = l ,  2, 3. 4 - frequencies of symbols in examined 
symbolic sequence. After calculation of mutual information. we 
estimated probability of random similarity between sequences S(3) 
and A(n). We used Monte-Carlo method to make such an estimation 
(Chaley et al.. 1999) where statistics (Zvalue) was calculated as: 

where7and D(1) are mean value and dispersion of mutual information 
value for a set of random matrices with same sums x(i) and yu)  as in 
source matrix M. Z value has a distribution close to normal. We 
checlted this by comparing artificial periodic sequence with a set of 
random sequences with a length lo7 symbols. This allows the use ofZ 
as a measure of similarity between artificial periodic sequence and 
DNA base sequence. The higher Z value is, the higher is similarity 
between sequences S and A, and also periodicity is more explicitly 
expressed in sequence A. In addition, it is convenient to use matrix M 
for representing the form of periodicity observed in sequence A 
because same Zvalues can be obtained for different matrices M. 

We scanned sequence A for a region having maximally expressed 
TP. We denote such a region as "maximal subsequence" ofA. In order to 
find it. we examined all possible positions of left and right bounds for 
sequence A(i), n>i>_30. We searched for sequence having maximal Z 
value. SequencesA and S were not changed or shifted relatively to each 
other; searching for maximal subsequence ofA was accomplished only 
by shifting starting and ending coordinates of subsequence in A and by 
filling matrix M. We shifted left and right bounds by a step divisible by 
three bases. This means that first position of matrix M for maximal 
subsequence always corresponded to first base of codon and ORF. We 
assumed shift index for matrix M (Table 1 )  to be equal 1. 

IfZvalue for maximal subsequence ofA was greater than 5.0, then 
we assumed that we found region with TP. Value of Z greater than 5.0 
ensures that probability of incidental revealing of TP in DNA base 
sequence is less than  hereafter, we saved maximal subsequence 
found for the given gene, its coordinates in the gene and periodicity 
matrix M reflecting a type of the found TP. Revealed sequences were 
saved (with auxiliary information) for further obtainment of TPCs. 

We have chosen threshold level Z, 5.0 for revealing TP in order to 
make number of incidentally found TP regions equal to about 1% of all 
regions with TP found in genes from I<EGG-29 databank. To choose 
threshold Zvalue, we generated a set of random DNA sequences of the 
same size and with the same sequence length distribution as in genes 
from I<EGG databank. For Z>5.0 number of found sequences was 
7.200, i.e. about 1.5% of found regions with TP. For Z,6.0 we found 172 
such sequences and none for Z>7.0. We have consciously chosen the 
level Z>5.0 in order to compose significant TPCs presenting in various 
genes as fully as possible. We checked stability of significant classes' 
classes' selection (see Section 2.2) by adding random matrices with TP 
in the range O<Z<7.0 into a set of found TPMs. Addition of up to 2% of 
random matrices did not change significant classes of TP. 

We also checked if the triplet periodicity found in maximal 
subsequence of A was induced by periodicity with longer period 
divisible by three. To do this, we built the full specter of information 
decomposition (I<orotkov et al., 2003a.b) for the maximal subse- 
quence of A and revealed the period length for which the value of Z 
was maximal. If this length was not equal to 3, then the triplet 
periodicity of maximal subsequence of A was treated as induced one 
(I<orotltov et al.. 1997), thus it was excluded from further investigation. 

Table 1 
Transformations of TP matrix for various shift indices relatively to central class matrix 

Shift index 

Matrix M 1 2 3 
dfter d shift 

1 2 3  1 2 3  1 2 3  

a m l l  m21 m31 a m31 m l l  m21 a m2I m31 m l l  
t m l 2  m22 m32 t m32 m l 2  m22 t m22 m32 m12 
c m13 m23 m33 c m33 m13 m23 c m23 m33 m13 
g m14 m24 m34 g m34 m14 m24 g m24 m34 m14 

-- - - 

a m32 m22 m l 2  d m l 2  m32 m22 a m22 m l 2  m32 
t m31 m2I ml1 t m l l  m31 m21 t m21 m l l  m31 
c m34 m24 m14 c m14 m34 m24 c m24 m14 m34 
g m33 m23 m13 g m13 m33 m23 g m23 m13 m33 

The table shows the positions of the elements ofTPM M for six shift variants with which 
i t  can be merged Into class. Shift indexequal to 1 shows full equivalence oftwo matrices. 
i.e.. absence of transformation i n  matrix M. This also means that ORFs in DNA sequences 
where matrix M were found and "central class matrices" (CCM) coincide with each 
other. Shift indices equal to 2 and 3 correspond to cyclic matrix shift after 
transformation per 1 and 2 bases, respectively. Shift Index equal to 4 corresponds to 
inversion of matrix M relative to CCM. This means that in matrix M rows corresponding 
to a andg, t and care swapped. Thereafter, columns 1 and 3 in matrix a!-e also swapped. 
These transformations are designated by asterisk. Shift indices equal to 5 and G show 
correspondence of matrices analogous to the one wlth sh~f t  index equal to 4, but w ~ t h  
cyclic column shift per 1 and 2 bases, respectively. 
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Fig. 3. Algorithm of classification. 

In case of revealing TP region in a gene, we excluded it from the 
further consideration. If gene had fragments that were not included 
into the maximal subsequences, then they were processed again to 
search for more TP regions. Such an examination lets us find genes in 
which there are two or more TP sequences, including sequences with 
different matrices M. 

2.2. Classification of triplet periodicity 

We carried out classification of TPMs by sequential class forming. 
Classification process included a set of cyclically repeated steps 
(further referred as iterations). Every iteration forms one TPC. In turn, 
iteration was conducted in two stages described below. 

During iteration, on the first stage we joined TPMs into candidate 
classes by using measure of their similarity to each other. allowing 
three direct cyclic shifts and three cyclic shifts in case of inversion. At 
the same time. for each candidate class we made a set of shift indices 
with which the matrix was joined into class. Thereafter, in each 
candidate class the most therein represented index was assigned to 
the value equal to 1, and other indices were cyclically shifted. For 
example, if the most represented shift index (relatively to central 
matrix) was equal to 2, then it was assigned a new shift index 1. In this 
case shift index 1 was replaced by 3 . 3  by 2 . 4  by 5 .  5 by 6 and 6 by 4 
(see Table 1 ). Consider also an example, where shift index 4 (inversion 
without cyclic shift) is dominant. Then bve replace shift index 1 by 4 .2  
by 5.3 by 6 . 4  by 1, 5 by 2, and 6 by 3. Consequently, the shift index 
which is the most represented in candidate class (relatively to central 
matrix) always has the value 1. 

During second stage of class forming iteration, we chose the most 
nonrandom candidate class on the basis of uniformity degree of its 
shift index set. This means that candidate classes having approxi- 
mately same numbers of each shift index (all possible are from 1 to 6. 
see Table 1) were recognized as random. Then matrices included in 
the most nonrandom candidate class were excluded from further 
examination and next iteration of forming a new class was performed. 
Scheme of class forming is shown in Fig. 3. 

Let us consider each stage of iteration in detail. On the first stage of 

matrix will be referred as "candidate class". To estimate the degree of 
matrices' dissimilarity, the quantitative measure described below was 
introduced. During matrix comparison, all possible cyclic shifts and 
DNA sequence inversion were taken into account. i.e. totally 6 
comparisons were made for a pair of matrices. At each comparison 
we fixed central class matrix and only the matrix it was compared 
with was transformed. From these 6 matrix pairs we chose the one 
with the smaller dissimilarity. For each candidate class a list ofTPMs 
with corresponding shift indices (from 1 to 6 )  was built. Correspon- 
dence between shift indices and matrix transformation is shown in 
Table 1. We performed process of candidate class formation using each 
TPM as a central class matrix sequentially. 

On the second stage of iteration, we chose candidate class having 
the greatest deviation of matrix shift distribution inside it from 
uniform one. All the matrices included in this class were excluded 
from further examination. Formation of the next class was performed 
for the remained remaining matrices. Classification process continued 
until candidate class containing at least two matrices (central class 
matrix and another one) could be formed. After classification, we 

0,4 0.6 0,8 1,0 1,2 1,4 1.6 1.8 2,O 2,2 2,4 2,6 2,8 3.0 3.2 3.4 3.6 3.8 4,O 4,2 4,4 

Decimal logarithm of class size 

current iteration for each TPM we determined all matrices it is similar 
Fig. 4. Distribution of TPCs by size. Logarithmic axe X indicates class size and axe Y 

to. Each matrix forms candidate class consisting of itself and matrices shows number of classes, We see that major number of class have size from , to 
similar to it. This matrix will be referred as CCM, and the set of the ,,trices. 
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Fig. 5. Distribution of 1/1,,, value for significant and insignificant classes. 

obtained the set ofTPCs and set of matrices which were not included Variable 21 has a distribution x2 with 5 degrees of freedom 
in any class. For each class a set of shift indices for TPMs included in (I<ullback, 1978). Value of 21 equals zero if probabilities f, = are 
this class was also formed. equal to the values pi and 21 reaches maximum when value off, for 

Let us consider the process of two matrices' comparison and some i is equal to 1.0 and otherf, values are equal to zero. This means 
criterion of dissimilarity between them. As a criterion of dissimilarity that maximally heterogeneous shift index distribution in a class 
between two matrices M' and M2, we used the measure W(Gmurman, produces maximal value of 21. Consequently. we selected a class that 
2003) defined below as: had the maximum value of 21 among obtained classes, and then the 

A matrix T= (t,]} is defined as: 

where y: = Iirn;, p = l / 3 .  Variable 1 ,  has approximately normal 
distribution. Variable W has x2 distribution with 8 degrees of 
freedom. 

On forming candidate class, we introduced threshold value 
W=Wo=3.44. We consider that the matrix belongs to a candidate 
class if the value of W calculated by Eq. (3)  is less than threshold value 
Wo. Value of Wo asserts probability of accidental joining of matrices 
into one class to be less than 8.22 x It was obtained bv Monte- 
Carlo method after generating random matrices and choosing the 
matrices with Z>5.0 among them (see Eq. (2)). 

A choice of the value Wo=3.44 is related to two factors. First, we 
wanted to unite in classes as many matrices M as possible, and to leave 
outside the classes as smaller number of matrices as possible. At the 
same time, we wanted classes to be maximally representative and the 
number of classes to be relatively small. But, on the other hand, we 
wanted major number of matrices to be joined into nonrandom 
classes by homogeneity of shift indices presented in the class. The 
classification carried out for TPMs with values of Wo higher than 3.44 
showed that number of matrices included in nonrandom classes by 
shift index is decreasing under increasing Wo. From this point, the 
value W0=3.44 appeared optimal because it provided sufficiently 
large number ofTPMs that were included in nonrandom classes while 
number of formed classes remained relatively small. 

On the second stage of classification iteration, we chose candidate 
classes that were maximally homogenous by shift index. We used 
informational criteria to do this. Let x,, x2. .... x, be a number of shift 
indices 1 , 2  ..... 6 in class and N to be their total quantity, i.e. xf7,x, = N. 

By estimating shift indices homogeneity we check the hypothesis that 
a sample belongs to polynomial population p, ..... P6, I f=lpi  = 1, where 
pg i= l  16. Discrimination information is calculated as (I<ullback. 1978): 

process was repeated. Such a repetition continued until a class 
having value of 21 higher than some critical value 210 existed. Value 
of 21, was selected to obtain, on average, not more than one class as a 
result of malting classification for each set of random matrices. This 
number is provided by choosing value of 21, equal to 40.5. We 
determined number of random classes that were obtained after 
classification of random matrices for selected threshold value of 210. 
Thereto we generated 30 sets of random TPMs having the same size 
as a set of matrices obtained under analysis of [<EGG databank had. 
We have selected only the matrices having value of Z>5.0 (see Eq. 
(2)) for these sets. This means that approximately one of lo6 
generated random matrices was selected to be included in these sets. 
Then we conducted two stane classification described above for each " 
of 30 sets. Results have shown that for these 30 sets of random 
matrices only 21 periodicity classes having 21>210 can be built. So 
during such classification w e  can generate -0.7 random classes per 
set on average. These random classes contain only 0.015% of all 
random matrices subjected to classification. 

2.3. Analysis of heterogeneity of shift index distribution in insignijicant 
classes 

We can expect that not all of the classes built will have 21 2b40.5 .  
There are two reasons for such a case. First, class may have extremely 
heterogeneous shift index distribution, but value of N (Eq. (5)) may be 
small (few matrices in class). Second, shift index distribution (xi in Eq. 
(5)) can be close to uniform. To separate these two cases, we must 
introduce a measure that would reflect degree of heterogeneity of 

Table 2 
Distribution of matrices' shift relative to TPC-ORF 
.......................................................................................... 
Shift of periodicity against TPC-ORF Number of matrices Matrix shift indices 
......................................................................................... 
ORF 1 407687 1 
ORF 2 2558 2 
ORF 3 3162 3 
Total direct with frame shift 5720 2+3  
Total direct 413407 1+2+3  
Inversion. ORF 1 20199 4 
Inversion. ORF 2 7616 5 
Inversion. ORF 3 2576 6 
Total inverted with frame shift 10192 5+6  
Total inverted 30391 4+5+6 
Total with frame shift o r  inverted 36111 2+3+4+5+6  
Total number of periodicity regions 443798 1 + 2 + 3 + 4 + 5 + 6  
.......................................................................................... 
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Table 3 
Number of similarities for various ORF shifts 

Variant of codine Number of similarities Shift Fraction in 
sequence 
transformation 

By both By class ORF By KECC ORF index :~~~s~e,~~r~~dic 
ORFs only only seouences 

ORF2 . 7 823 335 2 0.46 
ORF 3 14 753 391 3 0.37 
Inversion. ORF 1 25 441 12302 4 0.64 
Inversion, ORF 2 12 352 3130 5 0.46 
inversion, ORF 3 0 38 840 6 0.34 
Total 58 2407 16998 0.54 

values xi and would not depend on sample size N. For values p,pi= 116 
Eq. (5) can be rewritten as: 

In a case when xi is also distributed uniformly (xi=N/6) the value 
of I=0.0. Maximum value of mutual information is observed for the 
case when some value of x, is equal to Nand remaining five values of 
xi are equal to 0. In this case: 

I,,,, = N log 6 .  (7) 

The ratio of the values 

whereJ=x,/N, will not depend on sample size N. Therefore, we can 
solve a problem of shift index distribution in insignificant classes by 
using value of 1/1,,,, that does not depend on sample size. 

3. Results 

Totally we have analyzed 578868 genes accumulated in 29th 
release of I<EGG databank (http://www.genome.ad.jp/ltegg/). Overall 
number of TP regions was 472 288. They were found in 457333 genes. 
These data show that more than 79% of genes have regions with TP. 
Such results conform to earlier works on revealing TP either by 
information methods or by other approaches (Tiwari et al., 1997; Azad 

and Borodovsky. 2004; Henderson et al.. 1997: Crosse et al.. 2000). For 
each DNA sequence with TP we calculated corresponding symbol 
coincidence matrix M. Then we combined these matrices into classes. 
We solve two tasks during classification. First, we can find the level of 
TPMs' diversity. Second, we can determine whether there exists 
linkage between first codon base and first TP position, and, if it exists. 
how stable it is. During process of finding TP by information decom- 
position method, all first positions of triplet matrix corresponded to 
first codon positions, and they could only be changed during joining 
matrices into classes when matrix cyclic shift or its inversion were 
possible. In order to study this linkage, we generated a set containing 
shift indices of all matrices included in 'TPC simultaneously with 
matrix of this class. Consequently. we obtained 2520 classes of 
periodicity matrices (http://victoria.biengi.ac.ru/ancorfs/classes.php). 
Classes have large size diversity, from 1 to tens of thousand (Fig. 4). 

Classes with 2b40.5  (see Section 2.2) contain 443798 of 472288 
found TPMs. 8591 matrices were not included in any class and 
remained autonomous. 19899 matrices were included in insignificant 
classes (with 21340.5). We can see that about 94% of matrices were 
included in significant classes that show existence of linkage between 
TP and ORF. Class with 21540.5 could include small number of 
matrices, so that this number did not allow these classes to reach 
21>40.5, while shift index distribution for these classes could be 
heterogeneous. In order to check this hypothesis, we built distribution 
of I/I,,, value for significant and insignificant classes (Fig. 5). 

From this distribution we see that the value 1/1,, for most classes lies 
in a range from 0.5 to 1.0. In a case of insignificant classes, they mostly lie in 
the same range, and about four thousand classes have I/I,, near or equal 
to unity.Therefore, in a case of insignificant classes a linkage between ORF 
and TPC is also observed. General conclusion of classification made is that 
there exists significant linkage between TPC and ORF in gene. We have also 
found that only about 8% of matrices were included in class with some 
shift or inversion of reading direction. This means that only 36111 of 
443798 revealed periodicity cases in significant classes have ORF distinct 
from the common for majority of matrices in the class. 

These data allow introducing of major ORF for each class - TPC-ORF 
(see Section 1). As it can be seen from the data shown above, such a frame 
for all classes is the ORF without shift or inversion (shift index for 
matrices equals l).Then we examined total number of matrices included 
in significant classes with shift indices 2-6 (Table 2). 

From Table 2 we can see that maximal number of matrices with ORF 
different from TPC-ORF have shift index equal to 4, i.e. thev have 
inversion without cyclic shift. This corresponds to inversion ofcoding 
sequence of DNA bases with superposition of ORF without shift (Table 1). 

2 2 4  KNPThVKNWKPSVFSVLFEGIKGLIVERNPMNVKNVEKPSFILQAFEHMXXYTLGLDLI 2 8 3  
+ P + V +PSV I I+ERN +VKNV K S Q + + + + 

9 8  EKPYKLMIVARPSVICQPLHAIVDFILERNLTSVKNVMKLSVSNQVIKDIGEFIMERNCT 1 5 7  

2 8 4  hVKNVGKPSTLLIPVECMKELILEKNHMNVNDVANHSVGPFLFDCMKELILERNLMSVNS 3 4 3  
NV +V +PS P+ + + I+E+N +V +V +V + +++ ILERN++SV 

1 5 8  NVMSVARPSVRSYPLPAIVDFIVERNLASVENVTRLTVSNKILKYVRKFILERNVISVMI 2 1 7  

3 4 4  VIKPSVFQVPFENTKQLTLERNPMNVNWKPSVFQVPFKDMKGLTMQRNPMNVNSVGKP 4 0 3  

V + S V + P  +ERN NV NV+K SV KD+ T+ RN V V + P  
2 1 8  VARSSVIRHPLYTIINFIVERNLTNVKNVMKLSVSNQTLKDIGEFTLVRNLTGVIGVARP 2 7 7  

4 0 4  SGVQVIFEFMKGHTLERNPMNVNSVEKFSFVPVPFDCMKEHTLERNPMNVNYAVKPSVFQ 4 6 3  

S + + LERN NV +V K S + E +ERN +V +PSV 
2 7 8  SVIHHPLHAIIDFIIJERNLTNVKNVMKLSDTNQILKDIGEFIMERNRTSVMSVARPSVRS 3 3 7  

VPFENMKKFTLEISLLSVSNWRPS 4 8 8  

+ F LEI+L+SV +V RPS 
HALHAIIDFILEINLISVMSVARPS 3 6 2  

Fig. 6. S~milarity of hypothet~c amino acid sequence obtained by 2nd ORF (R) from to locus ZN525-HUMAN from UniProt databank. 
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KEGG O R F :  D D H R N Q G K N R R C H M V E R L C  ... 
atgaccacagaaaccaggggaaaaatcgaagatgtcatatggttgagagactctgt ... 
atgaccacagaaaccaggggaaaaatcgaagatgtcatatggttgagagactctgt ... 

Class O R F :  M T T E T R G K I E D V I W L R D S V  ... 

Fig. 7. Recoding DNA base sequence of locus 7561 from KEGG databank from 157th to 1911th nucleotide (Fl) and from 158th to 1909th nucleotide (F2) into amino acid sequence. 
Figure shows beginning and end of sequences only. 

On the second place according to the number of matrices we can see the the similarities which might have originated not due to common evo- 
case of matrix inversion with superposition of codons with shift by one lutional origin of these sequences. but due to presence of amino acid 
base. Then we observe similarity of matrices with cyclic shift only (shift repeats in them. Each examined DNA sequence having shift index from 2 
indices 3 and 2)  and, finally, we have similarity of matrices with inver- to 6 was recoded into pair of amino acid sequences according to existent 
sion and shift by 2 bases. and hypothetical (TPC) ORFs. Consequently, after conducting search we 

We have also checked periodicity matrices for existence of sym- obtained lists of homologues for 20733 DNA regions withTP. For 16648 
metry inside them. This could be a cause of found shifts in classes. In periodicity regions no significant similarity to their protein products 
order to check this hypothesis, we compared each matrix to itself after obtained by any ORF was found, and also no repeats in similar sequences 
conducting all possible cyclic shifts and inversion. We found that 0.4% were found. In 58 cases we observed similarity for both hypothetic and 
of class matrices have similarity to itself (to one of five its own variants actual amino acid sequences (Table 3). 
obtained by shift and inversion). Similarity estimation was conducted Example of found similarity for hypothetic amino acid sequence 
by the same criteria as we used during classification. It looks like that obtained by TPC-ORF is shown in Fig. 6 and is available in Internet at 
though symmetry occurs in some matrices, in general it does not play http://victoria.biengi.ac.ru/ancorfs/pe~.php?perid=355386. 
significant role in forming shifts between matrices inside classes (0.4% Such similarity was found for the gene with identifier 7561 from 
of symmetric matrices against 8% of matrices with shift). 

Data of Table 2 show that ORF shifts and DNA sequence inversions 
occur in DNA coding sequences. It is difficult to change the TP by indi- 
vidual mutations ([Zorotkov et al.. 2003a).Therefore. we can observe it as 
a trace of previously existed ORF changed by deletions, insertions or 
inversion of DNA sequences in genes. However, this hypothesis needs 
additional proof. We can prove it by recoding nucleic sequence, where 
we found ORF shift, into amino acid sequence by using TPC-ORE Same 
translation can be done for sequences where TPM with shift indices 4 .5  

IZEGG databank and the amino acid sequence from UniProt databank 
with identifier Q8N782 (Ota et al., 2004). Gene 7561 has length of 
1929 nucleotides; TP is most expressed in sequence from 157 to 1911 
nucleotides. TPM of this DNA region was included in the correspond- 
ing class with shift index equal to 2 (Fig. 7). 

It corresponds to 2nd ORF (first ORF corresponds to original, i.e. 
IZEGG. amino acid coding in this gene). The TPC (Table 4)  joined 2246 
TPMs. and in the given class totally 96.7% (2172 of 2246) of matrices 
have shift index equal to  1. 

and 6 was obtained. We must also add inversion procedure for DNA Using this gene with ORFs 1 and 2 (Fig. 7) we built amino acid 
sequence, i.e.. its flip-over by 180 degrees and replacement of DNA sequences. Then we analyzed similarity between these amino acid 
sequence bases to complementary ones. After such transformation we sequences and UniProt databank by BLAST program. We found 31 
obtain hypothetic amino acid sequence that could be in gene before ORF 
shift or sequence inversion took place. If we show that hypothetic amino 
acid sequence has homologous sequences in UniProt databank, then this 
will prove that processes of ORFshifts and inversions actually took place 
in DNA fragment. At the same time, this fact can be considered as very 
probable if amino acid sequence obtained by original ORF from IZEGG 
databank (IZEGG ORF) also has amino acid similarity. 

To check this hypothesis. we searched for homologues of protein 
products coded in found gene regions. We performed coding by either 
IZEGG ORF or class frame. Search for homologues in UniProt databank 
was conducted by using BLAST program. Only significant cases having 
probability of incidental coincidence (e-value) less than 5% were 
considered among found similarities. Then we chose the similarities 

cases of similarity for amino acid sequence coded by TPC-ORF 
(hypothetic amino acid sequence) and 1427 cases of similarity for a 
protein coded by IZEGG ORF. Best similarity with original (IZEGG) ORF 
was found in the sequence PI7017 (Thiesen. 1990) (similarity from 53 
to 637 amino acids), where full similarity (100%) between amino acid 
sequences was observed (Fig. 6). 

Thus, data from Table 3 show that we can simultaneously reveal 
similarity for both class and IZEGG ORFs only for few genes for which TP 
was joined intoTPC with ORF shift. Probably, genes have accumulated 
many substitutions after an ORF shift took place, and similarity cannot 
be revealed or this sequence has no similar sequences in UniProt at all. 
Nevertheless, 2489 genes have similarity for amino acid sequences 
coded by TPC-ORF, but have no similarities for amino acid sequences 

for the amino acid sequences in which m-repeats program had not created by IZEGG ORF. These data suggest that at  least 2489 sequences 
found amino acid repeats (Pellegrini eta]., 1999).This allowed excluding could be formed by ORF shifts or inversions. 

We have developed databank that contains information on found 

Table 4 
Matrix of TPC containing TP of  DNA base sequence from 157th to 1911 th  nucleotide of 
locus 7561 from KEGG databank 

similarities for all examined periodicity regions (http://victoria.biengi. 
ac.ru/ancorfs/), class matrices and genes included in TPCs (http:I/ 
victoria.biengi.ac.ru/ancorfs/classes.php). 

4. Discussion 

Phenomenon of TP was observed long ago (Fickett. 1998; Staden. 
1994; Baxevanis. 2001; Gutierrez et  al., 1994; Gao et al., 2005; Yin and 
Yau, 2007; Eskesen et  al.. 2004: Bibb et  al.. 1984: IZonopka, 1994; 
Trifonov, 1999). The data we obtained shows that major fraction (94%) 
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of TP found in genes from IZEGG-29 databank can be reduced to 2.520 
classes. Each class on the average contains 86.2% of matrices with first 
base of matrix M corresponded to first base of codon, and only few 
classes (about 2%. 53 of 2520) contain less than 50% of matrices with 
shift index equal to 1. Therefore, we can affirm that there exists strong 
correlation between TP and ORF in gene. If such correlation does not 
exist, then formation of TPCs by the algorithm used will be impossible. 
We showed this during classification of 30 random sets of TPMs 
obtained for 21 5.0. 

Introduction of TPCs seems to be important in development of 
more effective algorithms for finding DNA coding regions. During 
classification we characterized TP in detail and antagonistic matrices 
were included into different classes and do not "kill" each other. Under 
"antagonistic matrices" we assume such matrices that after aggrega- 
tion (first column is joined with first one, second with second one, and 
so on) they give degree of TP less than the one of source matrices 
(Fig. 2). This allows HMM methods and profile analysis to reveal 
coding sequences at more significant level based on TP belonging to 
antagonistic classes. The linkage between TP and ORF allows us not 
only to make predictions whether new nucleotide sequences belong 
to coding regions or not, but also to determine the most possible ORF 
for them. 

There are many classes having TPMs shifted or inverted relatively 
to original ORF of a gene. This fact witnesses for two hypotheses. First, 
such shift or inversion could be a consequence of nucleotide deletions 
and insertions or DNA sequence inversions when new ORF and new 
amino acid sequence arose (Raes and Van de Peer. 2005: Hahn and 
Lee. 2005). Since latent TP appears as collective property. it cannot 
disappear due to individual insertions, deletions. inversions or 
nucleotide substitutions (IZorotkov et al.. 2003a). Thus in gene with 
nucleotide deletion and insertion or with nucleotide sequence 
inversion in underlying sequence, a TP linked to ancient ORF will 
exist. A new ORF will be formed for this sequence. After detection ofTP 
in such nucleotide sequence and its further classification, it can be 
included in corresponding class with shift or inversion relative to new 
ORF. We actually detected these facts in the current work. This 
hypothesis is partially confirmed by data ofTable 3 and by presence of 
homologues to sequences built using ORF of corresponding class in 
UniProt databank. 

Secondly. we cannot eliminate the fact that TP of a same type can 
be incidentally formed in different genes and in different ORFs. In this 
case, during classification such TPMs will be included in correspond- 
ing class with different shifts or inversion. This can result in revealing 
some matrices in TPC which joined the class with a shift. We cannot 
easily estimate the fraction of such matrices in classes, but probably it 
is not too high because there are many TPCs which do not contain at 
all or contain just some matrices with a shift. 

We did not exclude triplet periodicity of genes which had similar 
nucleotide sequences from classification process. When using our 
classification algorithm, this can be the cause of size inflation for some 
triplet periodicity classes due to presence of homologous sequences. 
However, it is better not to exclude the similar sequences because the 
similarity level can be either high or low. On the one hand, choosing 
the similarity threshold level is rather arbitrary process that can 
hardly be sensible, but, on the other hand, this value would have a 
great influence on class formation. We think that exclusion of similar 
sequences can only insignificantly decrease the number of classes, but 
cannot substantially change the results obtained. In any case, the 
classification performed by us includes the whole variety of triplet 
periodicity which is present in the genes from IZEGG-29 database. In 
this sense, the classification is exhaustive. Moreover, the increased 
representation of triplet periodicity from similar sequences is not very 
important for the goals of our investigation since it cannot prevent us 
from using the obtained class matrices for more precise identification 
of DNA coding regions and for revealing the possible reading frame 
shifts in genes. 

It is interesting to consider the possible origins of triplet periodicity 
in genes. The factors that can lead to formation of such a periodicity 
include the protein saturation with certain amino acids. use of syno- 
nymic codons (Tiwari et al.. 1997). and also the certain order of triplet 
interchange (Sdnchez and Lopez-Villaseiior. 2006). It is also supposed 
that triplet periodicity can reflect the evolutional process of coding 
sequences' origination (Eigen and Winkler-Oswatitsch. 1981: Eskesen 
et dl.. 2004). The periodicity classes obtained by us integrally reflect all 
these characteristics of coding sequences. It can be also surmised that 
triplet periodicity of coding sequences causes the formation of certain 
specter of DNA naturalvibrations (Bouret al., 2005: Girirajan et dl.. 1989: 
Chou. 1984). It is likely that these vibrations can play a certain role for 
performing some DNA-protein interactions. 
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