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Abstract

We used the method of Information Decomposition developed by us to identify the latent dinucleotide
periodicity regions in bacterial genomes. The number of potential minisatellite sequences obtained at high
level of statistical significance was 454. Then we classified the periodicity matrices and obtained 45 classes.
We used the other new method developed by us—Modified Profile Analysis—to reveal more periodic
sequences in the presence of indels using the classes obtained. The number of sequences found by
combination of these two methods was 3949. Most of them cannot be revealed by other methods including
dynamic programming and Fourier transformation.
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1. Introduction

The presence of repeated sequences is a common
feature for both eukaryotic and prokaryotic genomes.
It has been suggested that the repeats themselves
produce unusual physical structures in the DNA, causing
polymerase slippage and the resulting amplification.1,2

The other potential role for tandem repeats is gene
regulation, in which the repeats may interact with
transcription factors, alter the structure of the chro-
matin or act as protein binding sites.3,4 In the last few
years, tandem repeats have been increasingly recogn-
ized as markers of choice for genotyping a number of
pathogens.5–7 The rapid evolution of these structures
appears to contribute to the phenotypic flexibility of
pathogens.

Tandem repeats are usually classified among satellites
(spanning megabases of DNA, associated with hetero-
chromatin), minisatellites (repeat units in the range
6–10 bp, spanning hundreds of base pairs) and micro-
satellites (repeat units in the range 2–5 bp, spanning
a few tens of nucleotides).8 Microsatellites or simple

sequence repeats (SSRs) are tandemly repeated
DNA sequences found in varying abundance in most
genomes.9,10 These repeats have been extensively used
for genetic mapping and population studies.11 Micro-
satellites are frequently polymorphic with the number of
repeat units varying between organisms. The polymor-
phism associated with tandem repeats has been used in
mammalian genetics for the construction of genetic maps
and still is the basis of DNA fingerprinting in forensic
applications. Polymorphic minisatelites are also found in
bacterial genomes.8

The availability of whole-genome sequences has
opened the way to the systematic evaluation of tandem
repeats diversity and application to epidemiological
studies.8 More recently, a number of studies12,13 have
confirmed the idea that tandem repeats reminiscent
of minisatellites and microsatellites are likely to be a
significant source of very informative markers for the
identification of pathogenic bacteria.

Once repeats are identified, the central task becomes
the clustering of tandem repeats into families, i.e. repeats
that occur in different locations in a genome but have
identical or very similar underlying patterns. Grouping
these repeats will facilitate identification and study of
their common properties. Tandem repeat families have
been detected in both prokaryotes and eukaryotes,
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including the Escherichia coli, Saccharomyces cere-
visiae, Caenorhabditis elegans and human genomes.14

Analyzing the mutational history of tandem repeats
requires utilizing the pattern of mutations among
adjacent copies to describe the interwoven progression
of substitutions, indels and duplication/excision events
leading from a single copy of the pattern to the present
day sequence. Such histories can suggest how the bound-
aries and size of the duplication unit vary and may reveal
details about the duplication mechanism.15

Among the best programs for finding the tandem
repeats are Tandem Repeats Finder15 and mreps.16

Although they overcome some limitations of other
algorithms, they have their own, limitations, namely
the size of the pattern (Tandem Repeat Finder) and too
rigid pattern definition (mreps). Since the results of
these methods depend strongly on the homology of
the DNA regions, they cannot be used to identify the
fuzzy periodicity and ancient minisatellites.

A number of public tandem repeat databases are
available now. To name a few, a database of bacterial
genomes,8 a short tandem repeat DNA database,17

TRDB15 and TRbase.18 The methods and programs
described in the previous paragraphs are used to fill such
databases in most cases. In Section 3 we will discuss in
detail the advantages and drawbacks of the existing
methods.

This paper has the following goals. The first goal is
to identify the potential minisatellites with the method
of Information Decomposition (ID),19 to calculate the
periodicity matrices and to classify them. The second
goal is to find the new periodic regions (in the presence
of insertions and deletions) with the Modified Profile
Analysis (MPA)20 approach using the periodicity class
matrices found on the previous step.

We have chosen bacterial genomes as a target of our
study for the following reasons. First, bacterial min-
isatellites can be used as markers for PCR, so there is a
practical application for this work. Second, the muta-
tional history of bacterial genomes is evidently more
prolonged than that of eukaryotic genomes, so search for
the fuzzy repeats is more complicated, but at the same
time can give more insights concerning the biological
role of ‘ancient’ minisatellites. Third, the comparatively
small number of available sequences could result in less
number of classes, thus making it easier to explore their
properties and to reveal the biological principles standing
behind the results of classification process.

As we will show in Section 3, our method can reveal
the periodical sequences that were not found by the
existing software packages.

2. Materials and methods

Our search for the potential minisatellites was focused
on the bacterial genomes, since their size allows finishing

the computations in a reasonable amount of time; since,
the periodical sequences found yield the evident practical
application, they can be used in PCR analysis. In
bacterial genomes it is possible to find the very old or
‘ancient’ microsatellites possessing very fuzzy periodic-
ity, so they can be passed through by the mathematical
methods of tandem repeats finding. Yet these ancient
sequences are of great biological interest since they are
usually highly polymorphous and, thus, can be used as
genetic markers.

The method proposed in this paper consists of three
parts—usage of ID method19 to obtain the initial data,
classification of the results found and the usage of MPA
for searching the sequences with indels.21 The usage of
periodicity classes rather than all periodic sequences
found dramatically decreases the searching time for the
MPA method. The advantages of using the combina-
tion of these methods are: no limitations are placed on
the size of the sequence containing the repeated pattern,
so the search becomes more versatile; usage of the
classification matrices allows us to find even distantly
related sequences; although we use the alignment
matrices, we do not fill them entirely, which speeds
up the calculations even more. And the main advantage
is that by using this combination of methods we can
find the distantly related repeats and ancient mini-
satellites possessing very fuzzy periodicity that cannot be
revealed by other methods.

2.1. Information decomposition

The method of ID is described in detail in ref. (19).
Since this method plays an important role in the present
study, we also give its thorough description.

At first, let us define the concept of latent periodicity
of a symbolical sequence.

Suppose that we have a sequence S, which consists of
N subsequences Si (i ¼ 1, 2, . . .,N) of equal length L:

S � S1S2. . . SN � fs11s12. . . s1Ls21s22. . . s2L. . . sN1 sN2 . . . sNL g

where sji are DNA bases. Suppose we are looking for
a period of the length L in the sequence S ignoring
possibilities of insertions and deletions of symbols. To
find such a period we should evaluate global homology
between subsequences Si (i ¼ 1, 2,. . . ,N). If this homo-
logy between subsequences Si is statistically significant,
we can conclude that symbol periodicity with period L
exists in sequence S. Possibilities for finding periodicity
in the sequence S will depend on the mode of insertion
of the quantitative measure determining similarity of
subsequences Si. At the present time, the method of
dynamic programming and Fourier transformation
are often used for these purposes. To introduce the
quantitative measure for global homology of subse-
quences Si these methods use a search for homology
between these subsequences. While using the method of
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dynamic programming, the search for homology is set
by BLAST or Identity matrices; in these matrices,
weight of coinciding bases is always higher than the
weight of non-coinciding ones, and, when using the
Fourier transformation, the search for homology is set by
laws of autocorrelation function construction.22 Earlier
we have shown19 that the homology search that uses
quantitative measures could miss a hidden periodicity of
length L in sequence S because of the lack of statistic-
ally significant homology between subsequences Si; also
we have shown that periodicity can be recognized only if
a sufficient number of Si periods is available.

Let us consider a notion of latent periodicity in more
detail. For introduction of the quantitative measure
of subsequences Si homology, we need to construct a
multiple alignment without inserts and deletions of
symbols and arrange these subsequences in sequential
order. The total weight of this multiple alignment,
which can be considered as the quantitative measure of
similarity of subsequences Si, can be introduced as the
sum of weights for all positions:

W ¼
XL
i¼1

Wi ð1Þ

The traditional approach calculates position weight as
the sum of weights of all possible pairs of DNA bases that
could appear while comparing the sequences:

Wi ¼
X
a

X
b>a

P sai ‚s
b
i

� �
ð2Þ

where a and b show numbers of subsequences Si; P is
some weight matrix such as BLAST or Identity matrices.
This expression can also be introduced as the following
sum:

Wi ¼
1

2

X
l‚ k

m i‚ lð Þ m i‚kð Þ�dkl
� �

P l‚kð Þ ð3Þ

where dkl is 1 at l ¼ k and 0 in all other cases. The
function dkl is introduced to exclude from consideration
the similarity of the subsequence Si to itself. Variable
values l and k show a type of DNA bases; m(i, l)
represents amount of base type l in the position i of
multiple alignment. Earlier we proposed another mea-
sure of similarity,23–25 which may be defined as the
‘information content’26:

W 0
i ¼

X4
l¼1

m i‚ lð ÞlnKm i‚ lð Þ
x ið Þy lð Þ ð4Þ

where K ¼ NL, xi ¼
P4

l¼1 m i‚ lð Þ and yl ¼
PL

i¼1 m i‚ lð Þ.
It is clear that the measures of homology of sub-

sequences Si determined by formulas (3) and (4) are
different and, thus, an alignment could have higher
weight using formulas (1) and (4) and lower weight using
formulas (1) and (3), and vice versa. However, the term

‘high weight’ is less informative especially during
comparison of weights determined by means of different
mathematical measures. For each of the introduced
measures we should determine the probability P that
the weight (higher or equal to W) would be found dur-
ing alignment of purely random sequences. In the case of
periodicity search for length L in R independent
sequences (e.g. analysis of R sequences from the
Genbank database) the probability f should be consid-
ered instead of probability P:

f ¼ 1 � 1 � pð ÞR ð5Þ

For evaluation of probability P during a search for the
period of length L in the sequence S using the measures
determined by formulas (3) and (4), we can randomly
mix initial sequence S and create many random
sequences Qi (i ¼ 1, 2, . . .) with length equal to the
length of sequence S. Using many such sequences Qi, we
can determine the value Z as:

Z ¼ W�E Wð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
DWð Þ

p ð6Þ

where E(W) and D(W) are the mean and variance of
the weight W, respectively; they are calculated for many
random sequences Qi. High values of Z correspond to all
lower values of probability P; they suggest the existence
of significant similarity between subsequences S1, S2, . . . ,
SN. For evaluation of only non-accidental similarity,
some threshold value of Z corresponding to the pro-
bability P < 0.05 is usually defined. Homologies with
Z-value exceeding threshold level are considered as
non-random.

As it was mentioned above, different weights and
different Z-values could result in differences in homology
level. In some cases, periodicity could be evident using
the information measure [formula (4)] and at the same
time could be missed by the methods of homology search
[formula (3)]. Let us define the probability P that corr-
esponds to Z-value calculated by formulas (3), (1), and
(6) as a and define the probability P that corresponds to
Z-value calculated by formulas (4), (1), and (6) as b. Let
us also assume that the sequence S contains hidden
periodicity of length L provided that the probability
a > 0.05 and the probability b < 0.05. Suppose that the
sequence S contains periodicity related to homology
between subsequences Si at a < 0.05 irrespectively of
the probability values b. Let us also suppose that the
sequence S lacks periodicity of the length L at a and
b > 0.05.

In practice such a difference in probabilities a and
b can be found quite often while analyzing rather long
sequence when some set of symbols, not only one,
appears at each position of the alignment. In this case,
the number of homologous coincidences can be relatively
small for each position. Since the weights of homologous
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coincidences in BLAST or Identity matrices are signifi-
cantly higher than the weights of non-homologous
coincidences, the final value of W can be relatively
small for small number of homologous coincidences; this
will provide rather high value of a. At the same time, b is
determined on the basis of deviations of DNA base
frequencies for each position i from the DNA base fre-
quencies determined for the whole sequence S being
analyzed. Such deviations can be significant and will
result in a small and statistically significant value of b
for a high and statistically insignificant value of a.

As an example, let us consider two DNA sequences;
one of them possesses perfect periodicity whereas the
other one has latent periodicity. We determine a and b

probabilities using the method of Monte Carlo. For each
DNA sequence, we generate 500 random sequences with
the same base composition as in the initial ones by means
of random shuffling of bases throughout the whole
DNA sequence. Using formulas (3) and (1), we calculate
the weight W for each of the 500 randomly generated
sequences, then determine E(W) and D(W) and finally
calculate Z-value by formula (6). We perform the same
calculations for the weight determined by formulas (4)
and (1). As the result, we will have two Z-values for each
DNA sequence: one value has been calculated by
formulas (3) and (1) and the other one by formulas (4)
and (1).

Let us take a DNA sequence containing 20 (N ¼ 20)
tandem repeats fatcgagtg as the first sequence. In sub-
sequent consideration, this sequence of 140 bases in
length will play a role of the sequence S while the length
of subsequence Si is equal to seven DNA bases; this
means that we are looking for the period of seven DNA
bases (Table 1). For the sequence S, we generate
multiple alignment of periods; here they play the role of
subsequence Si. These periods are positioned one under
the other. For this multiple alignment of periods, Z-value
calculated by formulas (3), (1) and (6) using BLAST
matrix is equal to 68.5 – 3.5, whereas Z-value calculated
by formulas (4), (1) and (6) is 55.2 – 1.9. These

calculations show that in the case of perfect periodicity
both methods of weight function calculation give very
similar results that are indistinguishable within the error
of calculation by the Monte Carlo method.

As a second example, we consider a DNA sequence
given below, which is characterized by the existence of
latent period of seven symbols in length (L ¼ 7, N ¼ 20).
Let us assume that DNA bases listed in Table 2 could
appear in each position of the period with equal
probability. One of possible sequences in which such
periodicity is actually observed is the following:

ACCTACATGGGTTTTAGTATGTTCTACTCGG-
ACTACACCCTATTCTCCGCCTCTTGTGGTTCTT-
GTGCCGTGCCCCTTCTTACTTACCCCTTTTGCC-
GTATGCTAAAGATCGAATCCTGTCTAACTTTG-
AATTAAGTATT

Since this period is a hidden one, it is impossible to
reveal the periodicity ‘visually’ by homology between
separate periods. Let us evaluate probability values a

and b for this sequence. For this sequence, Z-values
determined by the Monte Carlo method are 2.5 – 0.6 and
8.0 – 0.7. Using normal distribution for the evalua-
tion of distribution of Z-value, we obtain the value of

Table 2. The distribution of periodic sequences found by the groups of
organisms to which they belong

Category Subcategory Number of sequences

Archaea Crenarchaeota 9

Euryarchaeota 20

Bacteria Actinobacteria 61

Bacteroid 6

Chlamydiae 4

Chlorobi 2

Cyanobacteria 7

Deinococcus-Thermus 1

Thermotogae 1

Firmicutes

Firmicutes Bacillales 33

Firmicutes Clostridia 8

Firmicutes Lactobacillales 22

Firmicutes Mollicutes 4

Planctomyces 8

Proteobacteria

Alphaproteobacteria 43

Betaproteobacteria 26

Deltaproteobacteria 2

Epsilonproteobacteria 21

Gammaproteobacteria 158

Spirochaetes 14

Uncultured bacterium 3

Plasmids Plasmids 1

Table 1. Matrix used for generation of artificial sequence with hidden
periodicity of seven DNA bases in length

Position of
period

A set of DNA bases that could appear
in a given position of the period

1 atc

2 agct

3 ctg

4 agct

5 cta

6 ct

7 gat

In each position of the period probabilities of selection of any
base are equal to each other.
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probability a > 0.05 and the value of probability
b < 10�9. Thus, it is clear that such periodicity will be
statistically insignificant if we use the weight introduced
on the basis of BLAST matrix [formulas (3) and (1)]
and that it is revealed at a statistically significant level
using the information measure introduced by formulas
(4) and (1).

To make a search of the latent periods in symbolical
sequences we are going to use the idea of mutual
information. This idea is the keystone of the ID method.
ID is a spectrum representing the statistical significance
of mutual information for periods of various lengths in
the analyzed symbolical sequence. Mutual information
between the sequence of interest and artificial symbolical
periodic sequences can be used to obtain an ID spectrum.
Let the sequence under consideration have a length L.
We generate random sequences possessing the perio-
dicity with a period length equal to from 2 to L/2 using
numbers as symbols. The artificial sequence with period
length equal to n symbols can be presented as: 1,2,. . .,n,
1,2. . .n. . .. Further, we can determine the mutual
information between the analyzed sequence and each of
the artificial periodic sequences. To do this, we fill the
(n · k) matrix M where n shows the period length of the
artificial periodic sequence used, and k is the size of the
alphabet of the sequence under study. The elements of
this matrix are equal the numbers of coincidences of ij
(I ¼ 1,2,. . .,n; j ¼ 1,2,. . ., k) type between sequences
compared. L is the length of the analyzed symbolical
sequence, x(i), i ¼ 1,2,. . .,n are the frequencies of
symbols 1,2,. . .,n in the artificial periodic symbolical
sequence; y(j), j ¼ 1,2,. . ., k are the frequencies of
symbols in the analyzed symbolical sequence. The value
of the mutual information is calculated using formula

I ¼
Xn
l

Xk
l

M i‚ jð Þ ln M i‚ jð Þ�
Xn
l

x ið Þ ln x ið Þ

�
Xk
l

y jð Þ ln y jð Þ þ L ln L

ð7Þ

For ID construction it is necessary to take into account
that the value 2I(n, k) is distributed as x2 with (n � 1)
(k � 1) degrees of freedom.26 To estimate the statistical
significance of I(n, k) the Monte Carlo method is used by
means of Z(n, k) calculation using formula

Z n‚kð Þ ¼ fI n‚kð Þ�I n‚kð Þgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D I n‚kð Þð Þ

p ð8Þ

where I n‚kð Þ and D(I(n, k)) show the mean value and
variance of the I(n, k) value, for a set of random matrices
with the same sums x(i) and y(j) as in the initial
matrix M(n, k).

The spectrum Z(n,k) is similar to a spectrum of
Fourier transformation for numerical sequences but
has the following advantages: (i) the calculation of the

spectrum does not require any transformation of a
symbolical sequence to numerical sequences; (ii) ID
allows the revealing of both obvious periodicity and
the latent periodicity of a symbolical sequence in which
there is no statistically important similarity between any
two periods; (iii) the statistical significance of long
periods is not spread onto the statistical significance of
shorter periods; (iv) on the basis of the matrix M it is
possible to determine the type of periodicity (Fig. 1).

The window with the size equal to 2000 nt was used for
scanning the sequence. The length L of the sequence
under consideration was varied in order to find the
region of genomic sequence possessing the highest level of
statistical significance. The maximum possible value of
the length L was equal to the window size.

The region of the sequence under study is considered
to be periodic if the statistical significance Z for this
region is greater than some threshold value.

2.2. Algorithm of the latent periodicity classification

Each periodic region found by ID corresponds to its
positional frequency matrix M0. Since we consider
the periods of length equal to 2, this matrix can be
represented as a vector as in Fig. 2.

A block diagram for the algorithm of the latent
periodicity classification is shown in Fig. 3.

Since the regions of the latent periodicity were of
different length, all compared matrices have been
normalized to unity. We denoted the period length
as N (N ¼ 2), each matrix of the latent periodicity has
been represented as a vector of nucleotides’ frequencies
distributed over 4N ranks. We chose the Pearson
statistics as a measure of the similarity of two vectors
(or as a distance between them). To use this statistics,
we build two matrices—M1 and M2.

Let us denote a matrix obtained from a combination
of such two vectors as M1. It has the marginal fre-
quencies X(i) ¼ Sj M1(i, j), and Y(j) ¼ Si M1(i, j), where
SiX(i) ¼ SjY(j) ¼ 2.

Figure 1. Matrix T shows the symbol frequencies of the sequence with
the latent periodicity.

Figure 2. Periodicity matrix represented as a vector. Ki (K ¼ fA,T,
C,Gg, i ¼ f1,2g) represents the frequency (number of times the
symbol is observed) of symbol K in i-th position of the period for the
region found.
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A matrix M2 has been constructed as the expected one
over a set of the random matrices, having the same
marginal quantities X(i) and Y(j) as M1. Its elements
are defined as M2(i, j) ¼ (1/2)X(i) · Y(j). The Pearson
statistics, whose values’ distribution follows the x2,
allows the estimation of the deviation of quantities in
matrix M1 from expected ones in M2 matrix:

U ¼ x2 ¼
P

i‚ j f M1 i‚ jð Þ�M2 i‚ jð Þð Þ2g
M2 i‚ jð Þ ð9Þ

The number of the x2 degrees of freedom was equal to
(2 · 4N) � 1, that is, the number of comparison ranks
(the number of matrix M1 or M2 elements) minus the
number of independent linkages—a single claim on con-
stancy of marginal elements: X(1) ¼ X(2) ¼ 1.

The pairwise comparison has been made between
the vectors shown in Fig. 4. The lower index in Fig. 4
corresponds to the period position; the upper one reflects
an ordinal number of the compared vector.

General comparison scheme between the vectors was
as follows. At first we performed the pairwise com-
parison of all the initial periodicity vectors. For each
pair of vectors we calculated the Pearson statistics.
While making a comparison, we took into considera-
tion all cyclic permutations of vectors’ columns, which
was necessary because of uncertainty of the period start
position. A possibility of classic DNA inversions was
also considered in this calculation. To achieve this,
we replaced one of the vectors being compared by its
complementary and inverse variant.

In a second step, we chose the two vectors for which
the value of the Pearson statistics was minimal. If this
value corresponded to accidental probability of less than
or equal to 5%, then these two vectors were combined via
recapitulation of their elements. The elements of a new

vector were calculated as weighted sums of the elements
of two source vectors. The contribution of the specific
vector to the sum was greater, the higher the number of
vectors that had been already merged into it. A cyclic
permutation, fixed inverse and complementary trans-
formation were considered while making the vectors’
combination. Such a new vector was then normalized
again to unity. After this we returned to the first step,
but we have excluded two merged vectors from the set
and replaced them by one vector representing their
combination.

The process of vector comparison and merging had
been continued until the minimal value of the Pearson
statistics for the set of vectors became greater than
the x2 value corresponding to 5% level. The vectors
that were left up to this moment were considered as the
periodicity classes.

The classes obtained were then represented on a tree
diagram in Fig. 5. The x2 value was chosen as the
measure of dissimilarity between the class matrices in
pairwise comparison. We used the minimum-variance
method27 to build the tree diagram of classes’ similarity.

Let us note that critical level of the x2 value was
estimated as the result of all 2N trials in searching
for pairwise vector similarity. An accidental probability
of similarity found in 2N trials: a ¼ 1 � (1 � P)2N should
be less than or equal to 5%. From this point a critical
level of accidental probability in one trial P was
calculated by using the inverse x2 function.

2.3. Modified profile analysis

We have used the dynamic profile alignment
approach,21 which takes into account divergence of
sequences as due to spot mutations and also indels. The
method unites algorithms of dynamic programming for
finding the best alignment28 with analysis of position
specific nucleotides as in a profile.29 Since optimal align-
ment of analysed sequence has been built against a class
matrix, that represents distribution of base weights over
consensus positions, here we will use a term of alignment
against position-specific weight matrix (PSWM). The
procedure for building the PSWM is similar in a way
with the one described in ref. (20), but there are some
differences that will be described below.

In order to find periodic sequences in GenBank we
have built position-specific frequency matrixes of the

Figure 3. Block diagram of the latent periodicity matrices
classification.

Figure 4. A scheme of comparison between the two latent dinucleotide
periodicity matrices is shown. Both matrices are presented as 4N-
dimensional vectors. X and Y are marginal frequencies, X(i) ¼ Sj

M1(i,j), and Y(j) ¼ Si M1(i,j), where SiX(i) ¼ SjY(j) ¼ 2.
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nucleotides (PSMs) for each of the periodicity classes
obtained in the previous step. To prevent distortion of
base frequencies in isotypical periodic sequences, (effect
of unequal representation) we have used the Sibbald and
Argos algorithm30 to weigh up each sequence inversely
proportional to the number of sequences that are highly
similar to this sequence.

Obtained PSMs have been converted to PSWMs in
accordance with the formulae:

w0 S‚ jð Þ ¼ f S‚ jð Þ ln ff S‚ jð Þ/p Sð Þg ð10Þ
w S‚ jð Þ ¼ w0 S‚ jð Þ�~ww 0 jð Þ

where S ¼ fA,T,C,Gg, f(S, j)—element of PSM matrix,
P(S)¼

P
j f S‚ jð Þ, ~ww 0 jð Þ ¼ 0:25

P
S w

0 S‚ jð Þ—the mean
weight of the bases in the j-column of the PSM matrix,
w(S, j)—a weight of base S in the PSWM matrix.

If we use w0 only, rare nucleotides would have
almost zero weight. To avoid this, we found mean
weight for each position and subtracted it from w0 to
obtain the modified weight w. In this case, even very
rare nucleotides would have negative weight, though the
function w at small frequencies f(S, j) is somewhat
non-monotomic.

Therefore the transition to PSWM assists in assigning
the higher weight to rarely occurring bases in the perio-
dicity class when they have high occurrence frequency at
the given position in the PSM and vice versa, decreasing
the weight of bases with low occurrence frequency at the
given position.20

2.4. Algorithm of dynamic alignment of PSWM

We have used a dynamic algorithm for finding local
similarity,28 also known as the Smith–Waterman algo-
rithm,31 to align the GenBank sequence being analysed
against PSWM. Elements of the alignment matrix have
been defined in accordance with formulae:

F i‚ jð Þ ¼ max
n

max
1�k�dmax

fF i�k‚ jð Þ�vd 1þ log kð Þð Þg;
max

1�k�dmax
fF i‚ j�lð Þ�vd 1þ log lð Þð Þg;

F i�1‚ j�1ð Þ þ w S ið Þ‚ jð Þ; 0:0
o
;

F 0‚0ð ÞF 0‚0ð Þ ¼ 0:0;F i‚0ð Þ ¼ F 0‚0ð Þ�vd 1þ log ið Þð Þ;
F 0‚ jð Þ ¼ F 0‚0ð Þ�vd 1þ log jð Þð Þ ð11Þ

where i is the position of the base in the analysed
sequence, j is the position in consensus, dmax ¼ 40 is the
maximal analysed length of indels, vd ¼ 1.0 is the penalty
for opening indel, and w(S(i),j) is the PSWM element,
calculated through formulae (10), where S(i) is a base at
position i of the sequence being analysed. Scanning of
PSWM through GenBank has been carried out with a
step of 20 bases while the scanning window size (and
thus the maximal possible length of subsequence) was
equal to 1000 nt. The periodicity class consensus was
reproduced as many times as it was required to match
the length of maximal subsequence. At each step an
analysed sequence has been aligned against PSWM. We
filled the matrix F(k, j) completely and then found
its maximal element fmax(km, jm). Depending on the fmax

Figure 5. A tree diagram for the 45 classes of dinucleotide periodicity. The x2 value was chosen as the measure of dissimilarity between the class
matrices in pairwise comparison. We used the minimum-variance method to build the tree diagram of classes’ similarity.
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position, we determined the optimal alignment as the
way from the maximal element to the first zero with
coordinates (k0, j0). This allows us to find the ‘maximal
subsequence’.28 An alignment obtained shows this
maximal subsequence Sm, and the location of related
PSWM is marked by the nucleotides of higher weight.
In order to speed up the calculation, we limited the
maximal nucleotide subsequence to the range jk � jj < 30.
The cumulative weight of the found alignment was
defined as:

W ¼
Xjm
j0

w S ið Þ‚ jð Þ ð12Þ

2.5. Statistical significance of similarity

To determine the statistical significance of the found
alignment of the GenBank sequence, the probability of
alignment of the given PSWM against random sequences
with the same symbol composition needs to be estimated.
To do this, the alignment matrix F0 was filled using the
formulae

F 0 i‚ jð Þ ¼ max
n

max
1�k�dmax

fF 0 i � k‚ jð Þ � vd 1þ log kð Þð Þg;
max

1�l�dmax
fF 0 i‚ j � lð Þ�vd 1þ log lð Þð Þg;

F 0 i�1‚ j�1ð Þ þ w S ið Þ‚ jð Þ
o
;

F 0 0‚0ð Þ ¼ 0:0;F 0 i‚0ð Þ ¼ F 0 0‚0ð Þ�vd 1þ log ið Þð Þ;
F 0‚ jð Þ ¼ F 0 0‚0ð Þ � vd 1þ log jð Þð Þ ð13Þ

e.g. in a same way as in formulae (11) but without
considering zero values for choosing the maximum.
We then calculated d ¼ f(km, jm) � f(k0, j0). If we use
formulae (11), the distribution of d is close to normal.32

We confirmed this by using the imitation modeling
(Monte Carlo method). We generated 100 sequences
with the same symbol composition (i.e. symbol frequen-
cies and triplet correlation) as in the sequence under
consideration and then filled F0 matrix for each such
sequence. In other words, to determine the statistical
significance of the found local alignment we have assumed
it to be a global one (by fixing its co-ordinates) during
imitation modeling. In such a case most calculations
could be carried out before the databank scanning that
greatly speeds up the calculations.

As a measure of statistical significance, we have
determined the Z-score; that is, the normalized deviation
of the found sequence alignment weight from the average
weight of random sequences alignment against PSWM:

Z ¼ W � M W rndð Þð Þ
sW rndð Þ ‚ ð14Þ

where W—found alignment weight, Wrnd—random
sequence alignment weight, M and s—average value and
standard variance of Wrnd, respectively.

We set up the minimum length of a periodical
sequence to be found equal to 40 bases.

All significant results revealed were filtered in order to
exclude the overlapping sequences. If an overlapped
region exceeded 30% of the length of the smaller of
two overlapped alignments, only the alignment with the
greater Z-score has been left.

2.6. Statistical test for the periodicity

Since the method of MPA ensures only the statistical
significance of sequence similarity, not its periodicity,
we had to perform additional statistical test for the
sequences found by this method. To do this, we have
calculated the ID spectrum for all the sequences found by
MPA in the same way as it was described in Section 2.1.
We used the Monte Carlo method to calculate the
statistical significance. For each sequence we have gener-
ated 200 sequences by randomly shuffling its symbols
and then calculated mean, variance and, finally, Z-score
as it was described above. The sequence was considered
to be periodic with period length equal to 2 if the value
corresponding to this length in ID spectrum was maximal
and also was equal to or greater than 7.0. This test
ensures that the sequences showing the given parameters
possess the dinucleotide periodicity at statistically
significant level.

3. Results and discussion

3.1. Classification results for bacterial genomes

Making a search for the latent dinucleotide periodicity
in prokaryotic genomes from the GenBank-137 by using
the ID method, we have found 454 sequences possessing
the periodicity of such a type at level of Z-score � 5. In
order to find non-random sequences of maximal length it
is essential to choose Z-score providing <5% probability
of finding a random sequence with Z greater than this
threshold score. We found such a value by applying the
Monte Carlo method to a random set of symbols with a
length �10 times greater than the bacterial sequences
presented in GenBank. So we can conclude that the
number of ‘noisy’ sequences (i.e. the sequences that are
not significantly periodic) in the set of the sequences
found with Z � 5 is <5%. The distribution of
the sequences found by the group of organisms they
belong to is shown in Table 2. Rather a big number
of sequences belongs to Gammaproteobacteria (158) and
Actinobacteria (61). Together they account for more
than a half of the periodical sequences. The organisms
whose sequences include the biggest number of periodical
sequences are as follows: E. coli (31), Bradyrhizobium
japonicum (18), Xanthomonas campestris (17), Helico-
bacter pylori (16) and Xanthomonas axonopodis (16),
from which the last three belong to the pathogenic
bacteria and two others are symbiotic ones.
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The length distribution of dinucleotide periodic
sequences found in prokaryotic genomes is presented in
Fig. 6. The length of most of the sequences (�400) falls
into the range 1–300, with the shortest one being equal
to 28, but there are some examples of lengthy periodic
sequences having length of more than 1000 nt.

All 454 sequences were classified by the latent period
type as it was described above in Section 2. As a
result, 45 classes have been discriminated; each of them
combined three or more sequences of dinucleotide
periodicity. The total number of sequences belonging to
classes was 219. The distribution of the number of
sequences contained in the classes is shown in Table 3.

We see that more than a half of the sequences that
form the classes fall into two large classes, so the type of
periodicity represented by the latter is quite common.

The tree diagram of class similarity is shown in Fig. 5.
The largest class combined 19 loci of latent dinucleo-

tide periodicity (m · 10 on the tree diagram), next two

largest classes contained 11 loci each (m · 32 and m · 38
on the tree diagram). The latent period type of the
largest class is shown in Fig. 7. As we can see, cytosine
and guanine are clearly predominated in both positions.
Thus the period consensus may be conventionally
described as fc,ggfc,gg. Classes of latent dinucleotide
periodicity shown in Fig. 5 are combined according to
the similarity in period type. Let us consider, for
example, two extreme left and right groups of classes.
The first of them combines the classes m · 45, m · 14,
m · 5, m · 31, m · 19, m · 4, and the second combines
m · 38, m · 10, m · 13, m · 11, m · 35, m · 1.
The aggregation of classes in the first group takes place
due to the significant frequency of adenine appearance
in the first period position. The conventional consensus
of combination is fgfng, where n – any nucleotide from
the set (a,t,c,g). The aggregation process in the second
group is caused by the significant values of frequencies
of cytosine and guanine in the first position of the

Figure 6. Length distribution of dinucleotide periodic sequences found in prokaryotic genomes.

Figure 7. Non-normalized vector and normalized matrix of the latent
periodicity class containing the biggest number of sequences which
is equal to 19. Elements of the vector equal to the frequencies of
appearance of a, t, c and g nucleotides in the first and second
position of the period. The decimal numbers show the frequencies of
corresponding nucleotides in period positions.

Table 3. Distribution of the number of sequences in the classes obtained

Number of
sequences

Number of classes containing
the given number of sequences

3 22

4 5

5 5

6 5

7 2

8 2

9 2

11 1

19 1
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period. The combination conventional consensus in this
case is fgfng.

The presence of lengthy regions of latent dinucleotide
periodicity in prokaryotic genes allows one to think that
many prokaryotic genes show the high variability in
those regions which have little (if any) influence on the
functionality of the protein being coded. The mechanism
of microsatellites origin seems to be connected with
DNA strand sliding and with mispairing of neighboring
repeats at the time of replication.33 Owing to the short
cycle of prokaryotic organism reproduction, the number
of dinucleotide repeats grows rapidly, which leads
to the appearance of the lengthy tracts. The nucleotide
mutation rate should be high on the dinucleotide
periodicity tracts because of the lack of selective con-
straints, and thus the dinucleotide periodicity, erodes
rapidly becoming the latent periodicity. In addition, the
existence of lengthy dinucleotide periodicity tracts can
facilitate the improvement of the genome’s physical
properties, e.g. the raise of its flexibility, or, conversely,
the rigidity, for certain DNA regions. Thus, the latent
dinucleotide periodicity could be stabilized under the
influence of yet other forces of natural selection.

All the class matrices obtained are available
online as Supplementary Table 1 at www.dnaresearch.
oxfordjournals.org.

3.2. Search with the MPA

We made the search using the method of MPA for 45
classes obtained in the previous step. Each class matrix
was used for scanning through all bacterial loci in
GenBank. Totally 27 087 corresponding to the frequency
matrices of periodicity classes have been found. Among
them there were both sequences possessing dinucleotide
periodicity and many sequences possessing 6 nt periods
of similar type (3 periods of 2 nt each). The presence of
6 symbol periodicity is caused by triplet periodicity of
coding DNA regions (2 periods of 3 symbols each make
a 6 symbol periodicity). Therefore, we filtered the
overlapped sequences as it was described in the Section 2
and then use the statistical test described in the
Section 2.6 to find whether the sequences found possess
the dinucleotide periodicity at significant level. The
number of filtered sequences that have passed the test
was 3949. Such a big number in comparison with the
454 sequences that were found originally gives a reason
to suggest that these sequences consist of strongly
diverged tandem duplications. The periodicity of these
possible ancient microsatellites is fuzzy, so it cannot be
found by ID only.

All sequences found were aligned against the con-
sensus sequence corresponding to the periodicity matrix.
Examples of the alignments obtained are shown in
Table 4. The ID spectra for the sequences from Table 4
are shown in Fig. 8. From this figure it is obvious that
the maximal value corresponds to the period length

equal to 2 and this value is >7. So these sequences
possess the dinucleotide periodicity at statistically
significant level. None of these sequences were found by
other software packages.15,16,34

To get some biological insight, it is interesting to
explore which functional elements of DNA contain
periodicity and, inversely, which periodical sequences
belong to which functional elements. We used the
GenBank FEATURES field as a source of information
for our study. Only the sequences with high statistical
significance of their periodicity (Z � 7.0) were selected.
The sequence was considered to belong to some
functional element if its overlap with the region of
corresponding feature was equal or greater than 30%.

The distribution of the number of periodical sequences
overlapping with some functional elements of genome is
shown in Table 5.

Since the sequences of interest were prokaryotic, it is
not surprising that most of them belong to the gene
regions, so these data are not shown in the Table 5. Also
one can see that more than 100 sequences overlapped
with sequence repeats were already detected empirically,
so our method is proven to find such kind of repeats.
What is really interesting is that periodical sequences
were also found in promoters. The expected value for
the number of promoters in the periodic sequences
found is 32. It was calculated as a product of number
of promoters in all bacterial genomes available and the
fraction of periodic sequences in these genomes. Since
the value obtained is 14, the abundance of promoters in
periodic sequences is evidently not statistically signifi-
cant. Nevertheless, the study of the periodic sequences
found in promoters can be interesting since these
sequences could appear to be ancient minisatellites.

3.3. Comparison with related works and discussion

A number of algorithms have already been proposed
that either directly or indirectly detect tandem repeats.
All of them suffer from significant limitations. One group
of algorithms is based on computing the alignment
matrices.35–37 Their major drawback is excessive running
time. But what is more important is that the methods
that are based on using similarity matrices are able to
identify only the repeats with high level of homology
between repeat units. Similar phenomenon is described
in ref. (38). The methods for searching the periodicity
using Fourier transformation39–41 are not able to identify
the periodicity in presence of insertions and deletions in
sequence and they do not produce the periodicity matrix
that can be used for further analysis. Another group of
algorithms finds tandem repeats indirectly using meth-
ods from the field of data compression. An algorithm
by Milosavljevic and Jurka42 detects ‘simple sequences’,
i.e. mixtures of fragments that occur elsewhere. Simple
sequences may or may not contain tandem repeats and
this algorithm makes no attempt to deduce a repeated
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pattern. Some of the algorithms are sensitive dramati-
cally to the insertions and deletions in sequence and,
thus, can identify only the repeats obeying very strict
rules.43,44 The software programs for finding tandem
repeats in genomic sequences available in the EMBOSS
package34 identify tandem repeats of a very limited type
(certain microsatellites).

The major advantages of using the combination of
our methods are that the size of the periodic sequence
is not limited and is not specified beforehand; the
methods are able to identify even very fuzzy repeats; the
alignment matrices used are not filled entirely to speed
the calculation. Though other methods developed share
some of these advantages, to our knowledge, they are not
able to identify the potential minisatellites found by
using our approach.

The sequences shown in Table 4 have not been found
to be periodic or to be minisatellites by other programs
and methods available. We found 3949 possible mini-
satellite sequences in bacterial genomes; this is remark-
ably greater than the number of sequences already found.
Because of the statistical threshold defined, we can
conclude that >95% of the sequences found are periodic
at statistically significant level.

As a first step, we use the ID method to find periodical
sequences within bacterial genomes. Then we obtained
classes of periodicity (defined by frequency matrix) to get

some insight into the common patterns of periodicity for
different organisms or group of organisms. The patterns,
though rather fuzzy, do exist and we described this fact
in details in the Results section. Since the repeats in
bacterial genomes show high variability, most of them
cannot be revealed by traditional methods and by the ID.
MPA gives much better results, but it would take too
much time to make a search for the periodicity with
indels using all frequency matrices obtained using the ID.

Figure 8. Information decomposition spectra for AE012486 (a); AF453480 (b); CJ11168X1, positions 176412–176535 (c); and CJ11168X1,
positions 165728–165785 (d). The maximum at period length equal to 2 is clearly visible.

Table 5. Distribution of some periodical sequences revealed in
previously characterized DNA regions

GenBank feature Number of sequences
overlapping with the feature region

30-UTR 1

mRNA 10

Promoter 14

rep origin 26

repeat region 115

repeat unit 7

rRNA 51

sig peptide 2

stem loop 2

tRNA 60
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If we take class matrices rather than all periodicity
matrices, the time needed for the computations decreases
dramatically. For bacterial genomes, using class matrices
allows to speed up the calculation 10 times (45 class
matrices versus 454 initial matrices). On the other hand,
classes reflect more common properties of genome than
individual matrices and, thus, can be used to reveal more
periodical sequences. As we have shown in the Results
section, some classes contain more than 10 sequences
belonging to different organisms, so the genome pro-
perties they reflect are quite common. The number of
sequences found by our method proves these suggestions.

Albeit the revealing of periodical sequences in geno-
mes is an interesting and challenging task, the more
important thing is to correlate the periodicity with
possible biological functions and/or evolutional features.
We have discussed above the difficulties in identifica-
tion of ancient microsatellites and their importance for
PCR analysis because of their highly polymorphic
nature. In the Results section we showed some examples
of periodical sequences found within the regions that had
been already described as polymorphous. For each of
these sequences we found the others defined by the same
frequency matrix and, thus, possibly having the same
nature. And it is possible to use the periodical sequences
found with indels as a starting point for the PCR
analysis, because they can turn out to be highly poly-
morphous ones. The study of possible ancient minisatel-
lites may also be helpful for evolutionary analysis of
genomes.

4. Conclusion

In this paper, we have presented a new method
and algorithms for de novo identification of latent period-
ical sequences, which can be considered as potential
microsatellites and minisatellites. A remarkable feature
of this method is its ability to identify fuzzy or loose
repeats (e.g. possible ancient microsatellites) that cannot
be revealed by other methods.
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